
J Comput Virol (2009) 5:321–334
DOI 10.1007/s11416-008-0097-x

EICAR 2008 EXTENDED VERSION

White-box attack context cryptovirology

Sébastien Josse

Received: 20 January 2008 / Revised: 16 June 2008 / Accepted: 26 June 2008 / Published online: 2 August 2008
© Springer-Verlag France 2008

Abstract This paper presents the use of cryptographic
mechanisms that are suited to the white box attack context
(the attacker is supposed to have full control of the target
program’s execution environment) and as we will demons-
trate, to a viral context. Use of symmetric and asymmetric
cryptography by viruses has been popularized by polymor-
phic viruses and cryptoviruses. The latter are specialized in
extorsion. New cryptographic mechanisms, corresponding to
a particular implementation of traditional (black box) cryp-
tography have been recently designed to ensure the deep pro-
tection of legitimate applications. These mechanisms can be
misappropriated and used for the purpose of doing extorsion.
We evaluate these new cryptographic primitives and discuss
their (mis)use in a viral context.

1 Introduction

We have observed for several years the use of specialized
software protection applications by virus authors, with the
aim of resisting reverse engineering more efficiently. The
problem of content protection has triggered an important aca-
demic research in the field of software protection, under the
hypothesis that an attacker and a legitimate end user of the
protected software may be one and the same person. New
software protection mechanisms and complete suites allow

This paper has been awarded with the EICAR 2008 Best Student
Paper. Also with the Ecole Supérieure d’Informatique, d’Electronique,
et d’Automatique, Laboratoire de virologie et de cryptologie
opérationnelles, Laval, France.

S. Josse (B)
Silicomp-AQL, 1 rue de la Châtaigneraie, CS 51766,
35517 Cesson-Sévigné Cedex, France
e-mail: Sebastien.Josse@aql.fr

content providers to take drastic measures in order to secure
their applications in depth.

In the same way virus designers have used specialized
tools, such as packers, in order to reinforce virus protection,
we believe that other more elaborated tools, such as specia-
lized compilation chains, dedicated to in depth protection of
DRM applications, can be misappropriated and used for the
purpose of strengthen virus protection.

Among mechanisms brought into play by those software
protection suites, several of them are of a cryptographic
nature. In this paper, a novel use of one of these cryptogra-
phic mechanisms in a viral context is presented. The specific
case of the design of a virus specialized in extorsion [20] is
examined. The use of this kind of technology has to be taken
into account by the anti-virus research community, in order
to gain a broader vision of future viral threats.

Design and implementation of applications that are resi-
lient against reverse engineering is both a crucial and difficult
problem for many applications, especially when it is a mat-
ter of protecting proprietary algorithms and/or protecting the
rights control function conditioning access to whole or part
of its functionalities.

When the application to be protected cannot base its secu-
rity on the use of an hardware component, or on a network
server, we must make the hypothesis of an attacker able to
execute the application in an environment that he perfectly
controls. The attacker model matching this situation, called
White-Box Attack Context (WBAC)1 in this paper, imposes

1 It should be noticed that WBAC context is the most restricting for
software designers, insofar as a mechanism that is white box resiliant
must also be resiliant against black box (BBAC—Black Box Attack
Context) and gray box (GBAC—Gray Box Attack Context) attacks.
The BBAC context is the most classical in cryptography: the attacker
does not have access to information related to the implementation. The
GBAC corresponds to logical attacks exploiting information that leaks

123

322 S. Josse

a particular software implementation of classical cryptogra-
phic primitives.

In this context, software protection lays on mechanisms
covering several security objectives, among them the ability
to control, in various execution points:

– Code, critical data and execution context integrity;
– Proprietary algorithms confidentiality;
– Diversification of software instances;
– Software anchorage to a personalized target execution

platform, etc.

Viral context We can observe that malware not only have
to be resilient against reverse engineering, they also have
to evade detection. In the remainder of this paper, we will
take an interest in the use of cryptographic mechanisms by
a virus in WBAC context along with this additional
constraint.

The remainder of this paper is organized as follows: Sec-
tion 2 recalls fundamental theoretical results concerning
obfuscation as a virtual black-box property. Section 3 pre-
sents the problem related to the use of cryptography by a
virus for the purpose of doing extorsion and Sect. 4 gives
examples of (mis)use of white box cryptography. In this sec-
tion is also presented the need for a cryptographic mechanism
adapted to the WBAC context. Section 5 presents principles
of the white box implementation of two algorithms: DES
and AES. Section 6 discusses the robustness of these algo-
rithms against cryptanalysis. Section 7 concludes on the use
that could be made of this type of technology by tomorrow’s
cryptoviruses and on the countermeasures and limitations of
this technology.

2 Theoretical background

We will focus in this paper on cryptographic mechanisms
tailor-made to ensure confidentiality of a secret key within an
algorithm. Such a transformation (hiding a key in an encryp-
tion algorithm, with or without the help of environment inter-
action) can be formalized as an obfuscation transformation.
We recall in this section some negative and positive results
concerning code obfuscation, and their impact on this key
management problem.

Footnote 1 continued
from the hardware (power consumption, instruction’s execution time or
certain CPU operations, such as cache setting, electromagnetic radia-
tion, sound/noise spectrum, etc.). The attacker only has access to partial
information about the implementation. This information is obtained by
physical phenomenon’s modelisation.

2.1 Ideal obfuscator

Let us denote � a set of programs and P PT the set of poly-
nomial time probabilistic Turing machines. An obfuscator
can be formally defined as follows [7]:

Definition 2.1 A probabilistic algorithm O is an obfuscator
if it satisfies the following properties:

1. ∀P ∈ �, P and O(P) compute the same function;
2. ∀P ∈ �, growing of execution time and space of O(P)

is at most polynomial as regards to execution time and
space of program P;

3. ∀A ∈ P PT, ∃S ∈ P PT such as:

∀P ∈ �, p[A(O(P) = 1] � p[S P (1|P|) = 1].

Equality p[A(O(P) = 1] = p[S P (1|P|) = 1] is true up to
a negligible2 function µ of the program size |P|. The last pro-
perty, called virtual black box property, can thus also be writ-
ten: ∀A ∈ P PT, ∃S ∈ P PT and ∃ a negligible function µ

such as:

∀P ∈ �, |p[A(O(P)) = 1] − p[S P (1|P|) = 1]| ≤ µ(|P|).
This property stipulate that the obfuscated version O(P) is
perfectly unassailable, insofar as we cannot expect to learn
more by reverse engineering O(P) than by the simple obser-
vation of its inputs/outputs.

It can be noticed first that the reverse engineering action
is formalized as a predicate computation. We are thus taking
into consideration the weakest requirement with regards to
what can be calculated from O(P). The attacker is trying to
decide a given property of program P .

The virtual black box property expresses the fact that the
outputs distribution of any probabilistic analysis algorithm A
applied to the obfuscated program O(P) is almost everyw-
here equal to the outputs distribution of a simulator S making
oracle access to program P (program S does not have access
to the description of program P , but for any entry x , it is given
access to P(x) in polynomial time as regard to the size of P .
An oracle access to program P is equivalent to an access to
sole inputs/outputs of the program P). Intuitively, the virtual
black box property simply stipulates that everything that can
be calculated from the obfuscated version O(P) can also be
calculated via oracle access to P .

Such a generic compiler does not exist. The proof is based
on the construction of a program that cannot be obfuscated.

This impossibility result demonstrates that a virtual black
box generator—which could be able to protect the code of

2 A function µ: N → N is said negligible if for all polynomial
π ≥ 0, ∃N ∈ N such that ∀n ≥ N , µ(n) ≤ 1/π(n). A negligible
function is thus a function that grows much slower than the inverse of
any polynomial.

123

White-box attack context cryptovirology 323

any program by preventing it to reveal more information
than it is revealed by its inputs/outputs—does not exist. This
impossibility result naturally leads to important outcomes
for designers of obfuscation mechanisms adapted to WBAC
context. Let us consider a practical application of obfusca-
tion that consists in transforming a symmetric encryption
into an asymmetric encryption, by obfuscating the private
key encryption scheme.

A private key encryption scheme (G, E, D) (where G is
the key generation algorithm, E the encryption algorithm and
D the decryption algorithm) is said unobfuscatable if there
exist A ∈ P PT and a negligible function µ such as:

p
K

R←F
k
2

[A(˜EK) = K] ≥ 1− µ(k)

where ˜EK is any circuit computing the encryption function

with the key K (and K
R← F

k
2 refers to a random variable

uniformly distributed over F
k
2). An attacker is thus able, given

any circuit calculating the encryption function, to recover key
K . Unobfuscatable private key encryption scheme does exist
if private key encryption scheme does. This result clearly
states that all private key encryption scheme are not well
suited for obfuscation. However, it should be noticed that this
result does not prove that there does not exist some private
key encryption scheme such that we can give to the attacker a
circuit calculating the encryption algorithm without security
loss. It proves however that there is not a general method
enabling to transform any private key encryption scheme into
a public key encryption system by obfuscating the encryption
algorithm.

The problem of the construction of a private key encryp-
tion scheme verifying the virtual black box property (thus
resilient in the WBAC context) is so an open problem, even if
the impossibility result concerning a generic way to manage
it may seem discouraging for the security designer. As we
will see in Sect. 5, obfuscation by using a network of enco-
ded lookup tables makes it possible to obtain from DES and
AES algorithms versions that are more resilient in white box.
However, effective cryptanalysis of DES and AES white box
implementations establish that the problem of the construc-
tion of a private key encryption scheme verifying the virtual
black box property remains complete.

The ideal model of an obfuscator enabling to transform
any program into a virtual black box cannot be implemen-
ted. In particular, there is not any general transformation that
enables, starting from an encryption algorithm and a key,
to obtain an obfuscated version of this algorithm that could
be published without leaking information about the key it
contains. However, this formalism does not establish that it
is impossible to drown a key in an algorithm in order to trans-
form a private key algorithm into public key encryption. We
set out to apprehend this problem in practice, by evaluating
the most relevant practical propositions in this research field.

2.2 Notes on less restrictive obfuscator models

Several attempts have been made to relax the ideal model
of obfuscator, in order to obtain positive results for obfusca-
tion. It is possible to modify the virtual black box property in
order to make it less unattainable. We can notably quote the
τ -obfuscation [8], where the idea is not to search for perfect
obfuscation, but rather for an efficient resilience at least for
a certain time to deobfuscation transformations. More preci-
sely, a τ -obfuscator satisfies the modified virtual black box
property: ∀A ∈ P PT, ∃S ∈ P PT such as:

∀P ∈ �, p[A(O(P), 1τ×t (O(P))) = 1] � p[S P (1|P|) = 1].

This property states that any result that can be computed in
less than τ × t (O(P))—where t (O(P)) is the time needed
to obfuscate P—is actually computable from an oracle pro-
gram of P . Even if it seems that it is technically possible
to implement the τ -obfuscation concept, the existence of τ -
obfuscator remains an open problem.

It is also possible to express the characteristic properties
of the ideal obfuscator in a less restrictive model. The random
oracle model has been used to redefine the obfuscator notion
and to obtain positive results of obfuscation. It is indeed pos-
sible to build a class of functions that are obfuscatable in this
model: the point functions, namely the boolean functions
1α: Fk

2 → F defined as follows: 1α(x) = 1 if x = α, 0 other-
wise. For random oracles R : F∗2 → F

2k
2 , the obfuscator OR

transforms the program 1α into the program OR(1α) defined
as follows: ∀x ∈ F

k
2, OR(1α)(x) = 1 if R = R(α), 0 other-

wise. In other terms, in this model, the most classic method
to conceal a password (storage of hash value r = R(α)) can
be seen as obfuscation of a point function.

In the same way, the environmental key generation mecha-
nism (see Sect. 3.2) leads to a true obfuscation of the key in
the random oracle model.

Problem of implementation of the random oracle
model we expect that any protocol designed in this ideal
model remains secure when implemented by using a func-
tion easy to evaluate, such as a fixed hash function f (k, .):
F
∗
2 → F

l(k)
2 in the place of the random oracle. It has been

demonstrated in [14] that a system whose security lays on the
correlation intractability of its random oracle can be secure in
the random oracle model but does not remain secure anymore
when implemented using a function or a functions set.

Theorem 2.1 (Non-secure implementation of the random
oracle [14]). There exist encryption (and signature) schemes
that are secure in the random oracle model, but do not have
any secure implementation by functions sets. Moreover, each
of these schemes possesses a generic attacker that, knowing
the description of an implementation, is able to break the
scheme that uses this implementation.

123

324 S. Josse

It should be noticed that this theorem confirms the result of
Barak et al. When we try to modelize the reverse engineering
action, we cannot assume that the only thing an attacker can
do with the description of the oracle implementation is to
invoke it on the entries of his choice: we shall not ignore
that as it is usual in complexity theory, whole or part of the
program code can be given as an entry to the program itself,
and thus that disposing of the description of a function is
far more powerful than having a black box access to this
function.

The result of Barak et al. is furthermore complementary,
insofar as it proves that a natural method3 making it possible
to obtain appropriate functions sets does not permit to obtain
a secure implementation whatever the secure protocole in the
random oracle model that is considered.

3 Use of cryptography by a virus for the purpose
of doing extorsion

The study of viral mechanisms for the purpose of doing extor-
sion has been called cryptovirology [30,31]. After a virus
has triggered its final charge, the effects on the target sys-
tem can be irreversible for the victim but not for the virus
author. The latter can therefore extort money from the victim
in exchange for a way to restore its data. A first virus of this
type was observed in 1989 (trojan horse AIDS). It used a
simple substitution cipher.

3.1 Use of symmetric/asymmetric cryptography

Use of asymmetric cryptography makes it possible for a virus
to avoid carrying a deciphering key that can be captured. The
victim’s data are encrypted using the public component K pub

of an asymmetric couple of keys (K pub, K priv). The virus
author gives the private component K priv in exchange for
money.

The drawback of asymmetric cryptography is its slowness.
A first solution to this problem consists in ciphering only

certain files (trojan horse PGPCoder). A second solution
consists in randomly generating a key K and then in using a
symmetric encryption algorithm EK more efficient in order
to cipher the victim’s data. The virus next ciphers the key K
with the public component K pub of an asymmetric couple
of keys (K pub, K priv). The victim must transmit K pub[K]
and the extorted amount of money to the virus author. The
latter can then send the key K to the victim, enabling him to
restore its data without revealing the private key.

3 The method consists in applying a transformation (which modifies the
code of a program without altering its functionalities) to a set of pseudo-
random functions, namely a set of functions that cannot be distinguished
from a random oracle when given only oracle access to these functions.

We can thus see that both use of symmetric and asymme-
tric cryptography make it possible to design cryptographic
viruses specialized in extorsion.

3.2 Key management by environmental generation

Cryptography can be used to solve other problems that cryp-
tographic viruses must face: key management and polymor-
phism.

If sole use of asymmetric cryptography solves the problem
of key management, its main limitations are its slowness and
its lack of discretion as regard to detection of its cipher func-
tion.

Both uses of asymmetric and symmetric cryptography beg
the residual problem of key management: the key is first gene-
rated on the target platform, next written into a file. Traces
may subsist in memory, enabling a specialized company to
find back the key K . Moreover, laboratory study of virus
allows to develop a virus detection procedure for random
generation and ciphering functions.

Environmental key generation [17,18,27] specifically
addresses the problem of key management and supplies a
solution in the instance of directed viruses, namely viruses
designed to execute only on a target platform possessing fea-
tures already known from the virus author. Environmental
key generation is a mechanism that avoid storing the key
in the executable. The key is generated by application of a
hash function to activation data existing in the software’s
execution environment. Let X be an integer corresponding
to this environmental observation, Y the value needed for
activation (and carried by the program), h a hash function
and R1, R2 two nonces. Then possible constructions, among
many others, are [27]:

Let key K = X where the test is: does Y = h(X)?;
Let key K = h(X) where the test is: does Y = h2(X) =
h ◦ h(X)?;
Let key K=h(X1, . . . , Xn) where the test is: does h(Xn)=
Y ?;
Let key K = h(R1, X) ⊕ R2 where the test is: does Y =
h(X)?

The most important feature of each construction is that know-
ledge of Y does not provide knowledge of K .

Drawn from this principle, environmental code genera-
tion [1] is a mechanism that enables to dynamically generate
code, starting from activation data existing in the software’s
execution environment.

At the time of software protection, an instructions block
I is deleted. Given a key K and a hash function h, a value S
is brute force calculated such as the equation h(K ||S) = I
is satisfied.

123

White-box attack context cryptovirology 325

At the time of software execution, the key K is generated
by application of a hash function to activation data existing in
the software’s execution environment. The instructions block
I is then generated by h(K ||S) = I .

At the time of static code analysis (or dynamic analysis
in an environment that does not possess the same properties
as the target environment), the analyst knows S and the K
values domain. He does not know the generated code. In
order to recover the code chunck, the attacker must cover the
whole key space and for each value, test the generated code.
According to the generated code (semantic) nature, this brute
force attack can be very difficult to bring to fruition.

A critical analysis of these mechanisms has been develo-
ped in [18]. Observe also that at the time of dynamic analysis
of the code in the target environment, the attacker can recover
the key K and the related code.

3.3 Key management and diversification through white box
cryptography

White box cryptography looks for a particular implementa-
tion of encryption algorithms in order to increase the secu-
rity of key management. White box symmetric encryption
algorithms aim at assuring keys confidentiality in the WBAC
context. These implementations put forward an intrinsic
mechanism for instances diversification, making it possible
plentiful polymorphic versions of the encryption function.
The implementation reduces the code portion to its simplest
terms, banishing from assembler code any classical arith-
metical operation. Such a code is far easier to diversify by
using a polymorphism/mutator engine. A specific implemen-
tation of an iterated block cipher algorithm enables to obtain
several crucial properties for a ciphering function used by
a cryptographic virus: a key management mode adapted to
the WBAC context, an asymmetrication of a symmetric algo-
rithm, a diversification of the algorithm data (algorithm code
must be diversified by using a mutator engine). We will see
however that the code uses only a reduced portion of the CPU
instructions set, and that it thus goes along easier with diver-
sification by using a mutator engine.

Key concealing in the algorithm: It is difficult to recover the
key, given encryption algorithm’s code (or given decryp-
tion code);

Algorithm asymmetrication: It is difficult to forge the
encryption algorithm starting from the decryption algo-
rithm (and inversely);

Algorithm code and data diversification: It is difficult to
forge a signature given the algorithm code, because it
only uses non-arithmetical instructions and thus instances
(code and data) can be very diversified;

Execution time/memory space trade-off: Execution time,
even if more consequential than the execution time of

black box algorithm (storage space of lookup tables is not
negligible and imposes a memory load time before exe-
cution), remains far lower than the execution time of an
asymmetric ciphering algorithm.

This kind of mechanism finds a place on the side of other key
management cryptographic primitives (environmental key
generation by using hash functions, symmetric/asymmetric
cryptography) usable by a virus for the purpose of doing
extorsion.

4 Examples of use in a viral context

4.1 White box integrity checking

Before presenting examples of viruses using white box cryp-
tography for the purpose of doing extorsion, it is interesting
to present the use that is done by the specialized compilation
chain CSS (Cloakware Security Suite [15]). The white box
integrity checking function comprises:

– A first part implementing the hash function H and the
white box deciphering algorithm WBDK ;

– A hashes storage area WBEK [H(BODY)], called
Voucher.

White box integrity checking corresponds to the following
test:

H(BODY)==WBDK [WBEK [H(BODY)]]? OK : KO

Because it is difficult to recover the key K or to rebuild the
encryption function WBEK starting from the analysis (in
WBAC context) of the decryption function WBDK , the atta-
cker is not in a position to substitute new hashes to the values
stored in the Voucher, which would have allowed him to use
the modified application without constraint.

Observe that the verification function must be protected
against dynamic analysis.

4.2 Logic bomb

A first elementary example of malware using white box cryp-
tography for the purpose of doing extorsion comprises (in
addition to benign code portions and a possible trigger condi-
tion) a part WBEK implementing the white box encryption
algorithm and whose mission is to encrypt whole or part of
the victim’s data. The victim is not able to recover the key K
by using a WBAC analysis of the function WBEK . Conju-
gated use of a mutator engine MUT and a random bijection
generator RNG make it possible to create a huge number of
versions of this program, for a unique key setting K .

123

326 S. Josse

Table 1 Complexity of the detection problem of a Grammar G pro-
duction L(G), namely the problem: does x belong to L(G)?

Grammar type Complexity

Type 0 Undecidable

Type 1 NP

Type 2 NP

Type 3 P

As stated in the introduction, in the viral context, a mutator,
namely a polymorphic engine must reinforce both the diver-
sity and the resilience against pattern recognition. Both poly-
morphism [26] and metamorphism [19] can be formalized
as grammar productions. The difficulty to recognize a virus
corresponds to the required expressiveness of the machine or
automaton that is able to recognize the language L(G) gene-
rated by the grammar G by applying its production rules (see
Table 1).

When he first formalized generative grammars in 1956
[10], Chomsky gave the following classification:

– Type 0 grammars (unrestricted grammars), produce recur-
sively enumerable languages, namely languages that can
be recognized by Turing machines. Thus their produc-
tions simulate Turing machines. Consequently, deciding
whether x ∈ L(G) or not reduces the Halting problem;

– Type 1 grammars (context-sensitive grammars) or type
2 grammars (context-free grammars), produce languages
that can be recognized by non deterministic finite auto-
mata;

– Type 3 grammars (regular grammars) produce languages
that can be recognized by deterministic finite automata.

Thus the generative grammar type is crucial while desi-
gning a polymorphic engine [19]. This point will be discuss
in more details in Sect. 6.4

4.3 Polymorphic virus

Another elementary example of a virus (polymorphic virus)
using white box cryptography consists of

– A first part WBEK implementing the white box encryp-
tion algorithm;

– A second part WBDK (RNG||MUT) comprising a ran-
dom bijections generator RNG and a mutator engine
MUT, both encrypted by using decryption algorithm
WBDK .

The first part WBEK of the viral program encrypts whole or
part of the victim’s data, next it decrypts the second part of the

virus. The execution of the random bijections generator RNG
and of the mutator engine MUT results in the generation of
the function couple (WBEK ′ , WBDK ′). The key K ′ is possi-
bly transmitted to the virus author (with information about the
target computer). The algorithm WBDK ′ is used to encrypt
RNG||MUT (or MUT(RNG||MUT)). The new virus instance
is WBEK ′ ||WBDK ′(RNG||MUT) (or WBEK ′ ||WBDK ′
(MUT(RNG||MUT))).

4.4 Metamorphic virus

Another example, without self-modifying code (metamor-
phic virus), consists of:

– A first part WBEK implementing the white box encryp-
tion algorithm;

– A second part RNG||MUT comprising the random bijec-
tions generator RNG and the mutator engine MUT.

The first part WBEK of the viral program encrypts whole
or part of the victim’s data. The execution of the random
bijections generator RNG and of the mutator engine MUT
results in the generation of the function WBEK ′ . The key
K ′ is possibly transmitted to the virus author (with informa-
tion about the target computer). The new virus instance is
WBEK ′ ||MUT(RNG||MUT).

4.5 Comments

4.5.1 Diversification of the WBAC mechanism

The encryption or decryption primitive does not need to be
protected by mechanisms bound to hamper dynamic ana-
lysis, insofar as a single step examination of the execution
(context examination at each step of the execution) does not
provide information about the key. However, code diversifi-
cation is required in order to make the signature of the virus
difficult. Performed operations are not arithmetical, instead
they involve lookup tables runs. Lookup tables are diversified
because of their design.

However, it should be noticed that we must face the pro-
blem of diversification of the random bijections generator
RNG, the mutator engine MUT and the CPU instructions
required to go through a lookup tables network. This pro-
blem is discussed in Sect. 6.4.

4.5.2 Comparison with the hybrid symmetric/asymmetric
method

The strong points of white box cryptography with respect
to joint use of symmetric and asymmetric cryptography as
proposed in [30,31] are:

123

White-box attack context cryptovirology 327

– We can avoid using asymmetric cryptography,
– The cipher diversification mechanism is intrinsic,
– The code is easier to obfuscate because it does not contain

any arithmetical calculation.

4.5.3 Comparison with environmental key generation

The strong point of white box cryptography with respect to
environmental key generation is that the virus preserves its
freedom. It is not directed to a specific platform and does not
closely depend on a specific environment.

As compared with the two mentioned mechanisms, the
drawback of this mechanism is that it is not yet as robust
against cryptanalysis, as we will see in Sect. 6.

5 DES and AES white box implementations

We present in this section the principles of the white box
implementation of two well known algorithms: DES and
AES.

5.1 WB-DES implementation

A method has been published in [12] to make the extraction
of the key difficult in the white box context. The principle
is to implement a specialized version of the DES algorithm
that embed the key K , and which is able to do only one of
the two operations encrypt or decrypt. This implementation
is resilient in a white box context because it is difficult to
extract the key K by observing the operations carried out by
the program and because it is difficult to forge the decryption
function starting from the implementation of the encryption
function, and inversely.

The main idea is to express the algorithm as a sequence
(or a network) of lookup tables, and to obfuscate these tables
by encoding their input/output.

All the operations of the block cipher, such as the addition
modulo 2 of the round key, are embedded in these lookup
tables. These tables are randomized, in order to obfuscate
their functioning. The representation of DES as a sequence
of lookup tables requires to group together the transforma-
tions made along the 16 rounds in a different way.
Figure 1 shows these boundary changes. Each round of the
DES is cut in two layers. The first one is said to be non-
linear and contains the S-Boxes, whereas the other one is
said to be linear and gathers together the linear operations
such as the expansion, the xor operation and the permu-
tation. Inputs of this new representation are now 96-bits
binary words. Three variables are introduced: Xr−1, Rr−1

and Yr .

Fig. 1 One round of DES and its white box equivalent

– Xr−1 represents the output of expansion, a 48 bits word;
– Rr−1 represents the 16 bits of Rr−1 that are not splitted

by the expansion;
– Yr represents the concatenation of the S-Boxes outputs,

a 32 bits binary word.

It should be noticed that it is thus possible to untie the
Feistel scheme of DES and to implement it as a substitu-
tion/permutation scheme,4 as it is the case of AES.

The technique used to embed these keys is to represent
DES as a network of lookup tables, and to apply input/output
encodings in order to hide the keys. Using input/output enco-
dings make each lookup table locally secure5: it is not
possible to extract any information, in particular the embed-
ded key. Thus the main idea of this obfuscation method is
to be able to represent the whole DES as a unique lookup
table that is locally secure, namely from which it is not pos-
sible to extract any information. Unfortunately it is not pos-
sible because the representation of a vector boolean function
F

n
2 → F

n
2 requires an important memory space (exponential

in the size of the input, namely the parameter n makes the
memory space to rocket (see Table 2).

In order to take into consideration this constraint, smaller
lookup tables are used. After having implemented the whole
DES as lookup tables, the implementation is still not secure.

4 More precisely, each DES round is splitted into a non-linear substi-
tution step, bringing into play the S-Boxes, and a linear affine step.
5 The lookup tables are randomized, in order to obfuscate their internal
works: the input/output of these lookup tables are encoded by random
bijections. The use of this encoding ensure a local security, namely the
lookup table g◦T ◦ f −1 encoded by bijections f and g does not provide
any information about the original lookup table T . Given any lookup
table T ′, there exists always two bijections f ′ and g′ such that g′ ◦ T ′ ◦
f ′−1 = g◦T ◦ f −1 (for example f ′ = f ◦T−1 and g′ = g◦T ′−1). This
local security is evaluated by an ambiguity measure, which expresses
the difficulty that an attacker trying to suppress these parasite encodings
must face (see Sect. 6.2 for a definition of the ambiguity measure).

123

328 S. Josse

Table 2 Memory space required for lookup tables storage

n (lookup table Memory space
F

n
2 → F

n
2) n.2n/8 (bytes)

8 256 Bytes

16 128 KB

24 48 MB

32 16 GB

The next stage aims at encoding these lookup tables, in order
to prevent any information leakage about the round keys.
The technique involves composing the T-Box with non linear
bijections in input and in output. Given two random bijections
f and g (compatible with T), the T-Box is replaced with:

f ◦ T ◦ g.

Given three adjacent lookup tables L1, L2 and L3 and f and
g the input and output encodings applied to L2, table L2 is
replaced with its encoded version L ′2 = f ◦ L2 ◦ g. It is thus
required to encode the output of L1 with g−1 and the input
of L3 with f −1 insofar as:

L3 ◦ f −1 ◦ L ′2 ◦ g−1 ◦ L1 = L3 ◦ L2 ◦ L1.

Because we need the local security property to be useful in
our context, it is also required that the attacker should not
be able to distinguish the non-linear T-Box (embedding a
S-Box) from the bypass tables. A random permutation πr

must thus be applied on the order of the T Kr
i , i = 1, . . . , 12.

From now on, the local analysis of the T Kr
πr (i)

requires (12!)16

attempts.
At this stage of the obfuscation, inputs of first round’s

lookup tables are still exposed to a square-like attack [13].
Thus two external encodings F and G are integrated.

In summary, we were able to implement the whole DES
algorithm as encoded lookup tables, in such a way that it
seems difficult to extract any piece of information from any
lookup table, by observing its input/output only.

5.2 WB-AES implementation

Obfuscation of AES [13] is done in a similar way as for DES.
The goal is still to embed the round keys in algorithm code, in
order to avoid storage of the key in static memory or its load
in dynamic memory at the time of execution. The technique
used to securely embed these keys is (as for DES) to represent
AES as a network of lookup tables, and to apply input/output
encodings in order to hide the keys.

Let us remember that AES starts with an initial AddRound-
Key step and each further round of AES consists of four
steps: SubBytes, ShiftRows, MixColumns and AddRound-
Key for rounds r = 1, . . . , 9 and three steps SubBytes,

ShiftRows and AddRoundKey for round r = 10. In the white
box implementation, this structure is reworked so that the
initial AddRoundKey is part of a round. More precisely, if
S is the S-Box that carries out the SubBytes operation, and
(kr

i, j)(i, j)∈{0,...,3)2 the key of round r , then we first build the
10 T-Boxes:

T r
i, j (x) =

{

S(x ⊕ kr
i, j), ≤ r ≤ 9

S(x ⊕ k10
i, j)⊕ k11

i, j−i .

Observe that because of the linearity of the ShiftRows opera-
tion, it is possible to integrate the last AddRoundKey
operation in a T-Box.

The next step for AES obfuscation is to represent
Mixcolumns as a network of lookup tables. The T-Box is
then replaced with the composition of the T-Box with the
lookup table representing both the ShiftRows and MixCo-
lumns operations.

The technique used to encode the lookup tables is the same
one as for DES obfuscation, namely to compose the T-Box
with non linear bijections in input and in output. In order to
thwart a square-like attack, it is required to reinforce the local
security of the T-Box by using mixing bijections, namely
linear bijections, in order to insert a diffusion step. Given two
linear bijections m and M compatible with the preceding and
succeeding operations, the T-Box is now replaced with:

f ◦ M ◦ MCi ◦ T ◦ m ◦ g.

Insertion of such mixing bijections m and M requires their
cancelling by new lookup tables. Thus a new lookup table
in inserted between rounds r and r + 1. The latter cancels
both the mixing bijection M of round r and the mixing bijec-
tion m of round r + 1. We obtain the following additional
composition: g−1

r+1 ◦ m−1 ◦ M−1 ◦ f −1
r .

At this stage of the obfuscation, inputs of first round’s
lookup tables are still exposed to a square-like attack. Thus
two external encodings F and G are integrated.

In summary, we were able to implement the whole AES
as encoded lookup tables, in such a way that it seems difficult
to extract any piece of information from any lookup table by
observing its input/output only. In order to fully implement
the white box AES, we need four types of lookup tables:

Type I External encoding, namely a function F
8
2 → F

128
2

that composes two input decodings F
4
2 → F

4
2, a

linear bijection component F
8
2 → F

128
2 and 32

output encodings F
4
2 → F

4
2;

Type II R-Box, namely a function F
8
2 → F

32
2 that com-

poses two input decodings F
4
2 → F

4
2, a mixing

bijection m : F8
2 → F

8
2, a T -Box, the mixcolums

operation, a mixing bijection M : F32
2 → F

32
2 and

eight output encodings F
4
2 → F

4
2;

123

White-box attack context cryptovirology 329

Type III A function F
8
2 → F

32
2 that composes a mixing

bijection component M−1
i : F8

2 → F
32
2 , four times

a mixing bijection m−1 : F
8
2 → F

8
2 and eight

output encodings F
4
2 → F

4
2;

Type IV XOR-Box, namely function F
8
2 → F

4
2 that com-

poses two input decodings F
4
2 → F

4
2, a XOR loo-

kup table and an output encoding F
4
2 → F

4
2.

6 Evaluation

Before presenting WB-DES and WB-AES cryptanalysis, cri-
teria for security evaluation of a cryptographic primitive in
black box context are presented. In the WBAC context, we
can consider other criteria, such as diversity or ambiguity,
which are able to account for cryptographic quality of a white
box encryption algorithm component. Diversity and ambi-
guity are measures that are able to qualify supposedly the
robustness of the white box implementation. We apply this
criteria to WB-DES and WB-AES algorithms.

Finally, we present the main cryptanalysis of which these
two algorithms were the subject.

6.1 Black box security criteria

Black box analysis of DES algorithm leaded to definition of
general security criteria (such as strict avalanche or propa-
gation criteria, xor value, output bit independence criterion
[2,3,16,29]) on the confusion boxes of an iterated encryption
system as regards to linear and differential cryptanalysis.

High nonlinearity provides resistance against linear
attacks. Optimally nonlinear boolean functions are said to
be bent. The nonlinearity of an s-box S is the minimal dis-
tance of all non trivial linear combinations of the columns
of S to the set of affine functions. We expect the xor table
to almost have a constant and uniformly small distribution.
This second property will aid in protection against differen-
tial cryptanalysis. It should be noticed that the maximum
order SAC criterion is guaranteed if bent functions are cho-
sen for the columns of the s-box. In a nutshell,

– High nonlinearity provides resistance against linear
attacks;

– An uniformly small distribution of the xor table provides
resistance against differential attacks;

– The other properties (strict avalanche and output bit cri-
teria) ensure that the S-box has good dynamic properties
and are crucial in the design of the encyption algorithm,
especially concerning its diffusion property.

Other criteria, such as balancedness, algebraic degree, and
order of correlation immunity exist and are important for

the black box security [9]. Unfortunately, not all of these
properties can be achieved simultaneously.

These criteria are also fundamental for design and evalua-
tion in the white box context for several reasons:

– In the first place, a white box implementation must also
be resistant to black box cryptanalysis;

– Second, the white box cryptography uses black box
methods, with finer granularity (here, each lookup table
can be seen as a black box, of which we try to extract
information or the key);

– Last, design of an encryption algorithm tailor-made to be
white box resistant can lean upon these criteria to prove
its security.

About the above remark, it should be noticed that the random
generation of bent functions is not an easy task. S-boxes can
be created either randomly or deterministically. The advan-
tage of the former is that there is no simple mathemati-
cal structure that can be potentially used for cryptanalysis.
Both methods can be used simultaneously for the construc-
tion of bent functions, but deterministic known algorithms
are costly and reduce the diversity level obtained through
randomization.

6.2 White box diversity and ambiguity criteria

The diversity measure consists in counting the number of
different implementations that it is possible to generate
(including the variation of embedded keys). This measure
is important because it characterises the ability of the obfus-
cator to stave off large scale attacks (a priori). Attacks specific
to an instance then only have a limited range.

Definition 6.1 (White box diversity [13]). The white box
diversity metric counts the number of distinct constructions
or decompositions, namely the number of possible encoded
steps.

As an example, Table 3 gives the diversity measures of the
four types of lookup tables that are used in the AES white
box implementation.6

However, this measure does not account for an implemen-
tation robustness against an attack which aims to extract the
embedded key. In order to better qualify the robustness of
an implementation, it is more interesting to count the num-
ber of constructions, namely the number of keys and random
bijections reaching the same lookup table. The bigger this

6 For the reader who wants to check the calculus, let us remember that
there are 2n ! bijections F

n
2 → F

n
2, and among them 2n ∏n−1

i=0 (2n − 2i)

affine bijections (and
∏n−1

i=0 (2n − 2i) linear bijections). Moreover, the
Moivre-Stirling formula gives the approximation: n! � √2πn

(n
e

)n

(for n big enough).

123

330 S. Josse

Table 3 Diversity of WB-AES lookup tables

Type Diversity

Type I (16!)2 × 2016064 × (16!)32

Type II (16!)2 × 256× 262.2 × 2256 × (16!)8

Type III (16!)2 × 2256 × (16!)8

Type IV (16!)2 × 16!

Table 4 Ambiguity of WB-AES lookup tables

Type Ambiguity

Type I (16!)2 × 2016032

Type II

Type III (16!)2 × 15! if the two blocks of the matrix are of null rank

(16!)2 × 201602 if the two blocks of the matrix are of full
rank

Type IV 16! × 16

number is, the more ambiguity is introduced by the obfus-
cator. The ambiguity metric enables to account for the space
of possibility the attacker must face in order to find the exact
combination key/bijection used at the time of the generation
of the white box instance that he holds.

Definition 6.2 (White box ambiguity [13]). The white box
ambiguity metric is an estimate of the number of construc-
tions that produce exactly a certain table (of a given type).
It is defined as the ratio of its white box diversity and the
number of distinct tables (of this type).

As an example, Table 4 gives an approximation of the ambi-
guity measures of the four types of lookup tables that are
used in the AES white box implementation.

6.3 Cryptanalysis of two white box implementations

6.3.1 WB-DES cryptanalysis

Let us remember that in the DES white box implementa-
tion, a 96 bits word goes through lookup tables. This word
or internal state is represented in Fig. 1 by the concatena-
tion of blocks Lr−1 ∈ F

32
2 , Xr−1 ∈ F

48
2 and Rr−1 ∈ F

16
2 :

Lr−1||Xr−1||Rr−1.
Let us subdivise the internal state Lr−1||Xr−1||Rr−1 of

round r into 8-bits words. It is thus represented as the conca-
tenation of 12 binary words: vr

1||vr
2|| . . . ||vr

12. Each word vr
i

represents the encoded input of a T-Box T r
i , which can be

of two sorts: either a non-linear T-Box (embedding a S-Box)
or a bypass T-Box. The attack [24] works directly on the
vectors vr

i , by the addition of differences denoted �v (or
equivalently by the substitution of vi to a value v′i . Indeed,
vi⊕v′i = �v ⇔ vi⊕�v = vi⊕vi⊕v′i = v′i). Because on the

one hand the vectors vr
i are encoded versions of true inputs

f r
i (vr

i) of the T-Box and on the other hand the encodings f r
i

are not linear, it is not possible to deduce from �v the dif-
ference that is really applied to the input f r

i (vr
i). Therefore,

the attack observes the propagation of these differences on
the T-Boxes of the next rounds (r + 2, r + 3 and r + 4).

Thus the attack exploits the noteworthy properties of the
DES round function: input bits do not affect all output bits of
the round function. By analyzing the propagation of a diffe-
rence �v = v⊕v′ on the input of an encoded T-Box (namely
g◦T ◦ f) through several rounds, it is possible to obtain infor-
mation about the internal behavior of this difference. When
identified a set of differences: {�v | f (�v) corresponds to
one or two bits flips on input to T }, it is possible to recover
the key embedded in the white box implementation.

The differential cryptanalysis described in [24] works as
follows:

1. In the first place, distinguish the non-linear T-Boxes
among the 12 T-Boxes;

2. Second, partially discover the random permutation πr

that is applied to the non-linear T-Boxes, by using a stan-
dard (black box) implementation of the DES algorithm;

3. Last, extract the key Kr .

In conclusion, this attack exploits the weakness of the DES
round function. In order to thwart such an attack, the last
resort to improve this design seems to be the randomization
of the S-Boxes. If such a modification of the DES is clearly
unacceptable (mainly because the S-Boxes have strong secu-
rity properties, as stated in Sect. 6.1), it could be an interesting
trail in the viral context, even if random generation of such
vectorial boolean functions is not a trivial task. Indeed, an
attacker would have to reconstruct the S-Boxes for each new
version of the algorithm.

Let us see now the white box resilience of a much stronger
encryption algorithm, namely AES, which round function
seems to be immune to such a differential attack.

6.3.2 WB-AES cryptanalysis

As shown in Sect. 5.2, a round of the obfuscated AES is made
of two lookup tables. The first one achieves the operations
AddRoundKey, ShiftRows and MixColumns (the last round
is slightly different), whereas the second, inserted between
rounds r and r + 1, reverse the linear bijections that are
inserted both:

– Before the output encoding of the lookup table imple-
menting round r , as well as

– After the input encoding of the lookup table implementing
round r + 1.

123

White-box attack context cryptovirology 331

Fig. 2 Rr
j , j = 0, . . . , 3, r = 1, . . . , 9

A lookup table being a particular representation of a vectorial
boolean function, it is very possible to compose the lookup
tables between them when they match. This fact is exploited
by the cryptanalysis [5]. Let us consider the four bijections
that map 4 bytes of the current state to 4 bytes of the following
state. Each of these bijections is noted Rr

j , j = 0, . . . , 3,
r = 1, . . . , 9 (c.f. Fig. 2). The heart of Rr

j is the concatenation
of 4 T-boxes, followed by the multiplication by MC . This core
is protected in input and output by encodings (8 in total: 4 in
input, 4 in output). Let us recall that the latter are made of:

– In input, the concatenation of two 4-bits encodings, fol-
lowed by a 8-bits linear bijection;

– In output, a 8-bits linear bijection, followed by the conca-
tenation of two 4-bits encodings.

The cryptanalysis aims at recovering the parasits safeguar-
ding R-Boxes. To do so, the attackers proceeds in several
steps:

1. In the first place, linearize the P-Boxes and Q-Boxes, by
recovering their non-linear part.

2. After removing the non-linear parts of P-Boxes and
Q-Boxes, we obtain unknown affine bijections. The
second step of the attack consists in recovering the linear
component along with the translation vector.

3. The recovery of the linear bijections makes it possible
in the same time to recover the round keys that are inte-
grated in the S-Boxes, but in an unknown order. The last
step thus consists in exploiting the constraints that lean
on these bytes in order to classify them in the right order.
These constraints come from the cadencing algorithm.

In conclusion, it seems difficult to hide the algebrical struc-
ture of AES by only using encoded non-linear bijections.
In order to thwart this attack, one could introduce a linear
diffusion operation right after the first encoding (let us note
this new 32 × 8 lookup table network D−1

1), an operation
D2 (8× 32 lookup table network) being inserted right after
the substitution stage. We can expect that the noise introdu-
ced by these random permutations makes the second step of
the cryptanalysis—i.e. after encodings linearization—more
difficult.

6.4 Polymorphism

We give here a brief view of pros and cons of the use of
lookup tables. Let us remember that polymorphism can be
formalized as a generative grammar production. The more
irregular the grammar is, the more difficult it is to derive an
automaton from the grammar that is able to detect the cipher
function.

From a theoretical point of view [33], the kernel of a
polymorphic virus is made of an infection trigger condition
I (d, p), a payload function D(d, p), the corresponding pay-
load trigger condition T (d, p) and a selection function S(p)

of target programs to infect. The latter function is in charge
of the code mutation.

Metamorphic viruses differ from polymorphic viruses
since while polymorphic forms of a virus share the same
kernel, metamorphic forms of a virus do not. Using formal
generative grammars, it is possible to give a more practical
definition of metamorphism: Let G = (N , T, S, R) be a for-
mal grammar, where N is a set of non-terminal symbols, T
is an alphabet of terminal symbols, S ∈ N is the start symbol
and R is a production (or rewriting or semi-Thue) system
over (N ∪ T)∗, namely a set of rule producing the langage
L(G). We define G ′ = (N ′, T ′, G, R′) where the alphabet
of terminal symbols T ′ is a set of formal grammars, and R′
is a set of production rules over (N ′ ∪ T ′)∗.

Definition 6.3 (Metamorphic virus [19]). A metamorphic
virus is a virus whose mutation engine is described by a gram-
mar whose words are themselves a set of productions with
respect to a grammar. A metamorphic virus is thus described
by G ′ and every of its mutated form is a word in L(L(G ′)).

Thus from one metamorphic form to another, the virus kernel
is changing: the virus is mutating and changes the mutation
rules at the same time.

With regards to the detection complexity of mutation tech-
niques, several theoretical results have already been
established:

– Detection of bounded-length polymorphic viruses is an
NP-complete problem [28];

– The set of polymorphic viruses with an infinite number
of forms is a �3-complete set [32];

– Some code mutation technique embedding the word
problem—which is known to be undecidable with respect
to a semi-Thue system—leads to metamorphic viruses
whose detection is undecidable [19]. The PBMOT
engine’s productions rules change from mutation to muta-
tion and is specially designed to embed the word problem
(with respect to a semi-Thue system).

The formal frame being presented, the main question that
arises in our context is to prove that the white box

123

332 S. Josse

implementation is suited to hinder sequence-based antiviral
detection, by using a mutator engine. Because the implemen-
tation data is diversified by use of random bijections, only the
code handling must cancel as much as possible any potential
fixed element that would represent a potential detection pat-
tern. Intuitively, because the instruction set required is very
small and corresponds only to instructions needed to walk
through a table, production rules can map such instructions
to any chunk of code. Further investigations are required in
order to check this assumption. Moreover, several behaviors
may represent useful invariant that can be considered by anti-
virus, such as linear walk of lookup tables.

7 Conclusion

We presented in this paper a new use of white box cryptogra-
phy in the viral context. WBAC cryptographic mechanisms
enable an original way of key management, by embedding
the keys in the implementation with a partial evaluation as
regards to the key. This key management mode defines an ori-
ginal alternative to the environmental key generation (where
the key is not embedded in the program body but dynami-
cally generated starting from trigger information existing in
the virus environment) or to the use of an asymmetric key
infrastructure (where only the public key is stored in the virus
body). This mechanism offers a trade-off between symme-
tric and asymmetric encryption, by asymmetrication of the
implementation of an iterated block cipher.

WBAC cryptographic mechanisms enable a significant
diversification of implementations, by integration of random
bijections (used to encode the input/output of lookup tables
or to insert an additional diffusion step by means of mixing
bijections). Besides to ensure local security, this randomiza-
tion of implementations enables to generate numerous partial
evaluations of the encryption algorithm, for a single key set-
ting. Furthermore, the algorithm implementation does not
contain any arithmetical operation (it only contains opera-
tions enabling the dataflow to transit through a network of
lookup tables). It is therefore easier to generate polymorphic
instances of the algorithm by using a mutator engine (the
CPU instruction subset used by such an implementation is
reduced to basic memory handling instructions. These ins-
tructions are thus easy to diversify).

In the viral context, these properties are welcome. In parti-
cular, the corresponding obfuscation transformation could be
applied to asymmetric cryptography and to hash functions,
in order to increase the polymorphism level of encryption
and environmental key generation functions.

WBAC cryptographic mechanisms enable a noteworthy
strength against cryptanalysis in WBAC context: even if the
proposed mechanisms are not as resilient in white box as in
black box so far, the first attempts are encouraging, given

that encryption algorithms are not so easy to break. If they
do not yet offer a sufficient security level for digital right
management or critical applications, their potential use in a
viral context already poses a problem that must be taken into
consideration by antivirus research. If compilation chains
specialized in software protection are not widely available
for end users, this fact could change in the next few years. In
the same way as viral applications used specialized packers
to increase their strength against reverse engineering, we can
imagine that they use more complete solutions and integra-
ting white box cryptographic mechanisms, enabling them to
ensure an in depth protection.

7.1 Countermeasures and limitations

We made the conjecture that a virus whose code is only made
of the CPU instructions that are required to walk through
tables, the latter being wholly recomputed at each copy of
the viral code, is a code that is easier to remodel than a code
containing static immuable data and rich in arithmetical ins-
tructions. We observe that in order to be able to evade an
antiviral detection program, a special attention must be paid
to the mutator engine. It is also required to reinforce the
robustness of the white box cryptographic primitive by other
security mechanisms. In particular, other software protec-
tion mechanisms must thwart an attacker to extract the code
implementing the cipher function, that he could use as a key.
In the CSS software suite, these security hypotheses are cove-
red by the use of a specialized compilation chain, making it
possible to integrate additional protections at every step of
the compilation, in order to ensure an in depth protection of
the application.

7.2 Future works

Several additional tasks could be made in order to give a more
complete overview of this technology:

– Investigate the robustness of white box implementations
of AES algorithm with key sizes 192 and 256, along with
the additional linear bijections described in Sect. 6.3.2
and with a possible randomization of the substitution
boxes;

– Investigate a grammar-based implementation of the muta-
tor engine, tailor-made to exploit the structure of white
box implementations.

Concerning the S-boxes randomization, i’m currently wor-
king on random algorithms starting from properties of the
Algebraic Normal Form (ANF) representation of boolean
functions (remember that a boolean function can be repre-
sented equivalently as a truth table, a fourier spectrum or
as a multivariate polynom called ANF). The main idea of

123

White-box attack context cryptovirology 333

such a random generation algorithm is to put constraints on
the multivariate monom algebraic properties of the ANF of
boolean functions, in order to guarantee a high nonlinearity
(comparable with results obtained using known deterministic
methods).

Concerning the redesign of parts of AES and DES algo-
rithms to obtain diversity, some works have already be made
in this research area, mainly in the black box and gray box
attack contexts:

– In case of AES, we can take an interest in the dual ciphers
grey box secure design [4];

– In case of DES, we can cite the Fast Data Encryption
(FDE) design proposal [22], which has a DES-like struc-
ture and comes with an algorithm to construct strong
S-boxes.

A more ambitious investigation would be to design from
scratch an encryption algorithm specially designed to be resi-
lient in a white box context, namely not corresponding for
example to the white box implementation of any iterated
block cipher known for its black box resilience—the para-
digm of an iterated round function is perhaps not a solution
in the WBAC context, insofar as the cryptanalyst can work
on an arbitrarily reduced number of rounds.

References

1. Aycock, J., deGraaf, R., Jacobson, M.: Anti-Disassembly using
Cryptographic Hash Functions. University of Calgary, Canada.
Available at http://pages.cpsc.ucalgary.ca/~aycock/ (2005)

2. Adams, C.M., Tavares, S.E.: Designing S-Boxes for ciphers resis-
tant to differential cryptanaysis. In: Wolfowicz, W. (ed.) Procee-
dings of the 3rd Symposium on State and Progress of Research in
Cryptography, pp. 181–190. Fondazione Ugo Bordoni (1993)

3. Adams, C.M., Mister, S.: Practical S-Box Design. Workshop on
Selected Areas in Cryptography (SAC’96) Workshop Record,
Queens University, pp. 61–76 (1996)

4. Barkan, E., Biham, E.: In how many ways can you write Rijndael?
In: Proceedings of Asiacrypt’02, LNCS 2501, pp. 160–175 (2002)

5. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white
box AES implementation. In: Helena, H., Anwar Hasan, M.
(eds.) Selected areas in Cryptography. Lecture Notes in Computer
Science, vol. 3357, pp. 227–240. Springer, Heidelberg (2004)

6. Boneh, D., Felten, E., Jacob, M.: Attacking an obfuscated cipher
by injecting faults. In: Digital Rights Management Workshop,
pp. 16–31. Available at http://www.cs.princeton.edu/~mjacob/
papers/drm1.pdf (2002)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai,
A., Vadhan, S., Yang, K.: On the (Im)possibility of Obfuscating
Programs. Available at http://www.math.ias.edu/~boaz/Papers/
obfuscate.html (2001)

8. Beaucamps, P., Filiol, E.: On the possibility of practically obfus-
cating programs. Towards a unified perspective of code protection.
In: Bonfante, G., Marion, J.-Y. (eds.) Journal in Computer Viro-
logy, (2)–4, WTCV’06 Special Issue (2006)

9. Canteaut, A.: Cryptographic Functions and Design Criteria for
Block Ciphers. In: Progress in Cryptology—Indocrypt 2001, no
2247 in LNCS, pp. 1–16. Springer, Heidelberg (2001)

10. Chomsky, N.: Three models for the description of languages. IRE
Trans. Inform. Theory 2(2), 113–123 (1956)

11. Chomsky, N.: On certain formal properties of grammars. Inf.
Control 2, 137–167 (1969)

12. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A white-
box DES implementation for drm applications. In: Security and
Privacy in Digital Rights Management, ACM CCS-9 Workshop,
DRM 2002, Washington, November 18, 2002, Revised Papers.
Lecture Notes in Computer Science, vol. 2696, pp. 1–15. Springer,
Heidelberg (2002)

13. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box
cryptography and an AES implementation. In: Nyberg, K., Heys,
H.M. (eds.) Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 2595, pp. 250-270. Springer, Heidelberg
(2002)

14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle metho-
dology, revisited. In: Proceedings of STOC 1998, pp. 209–218
(1998)

15. Cloakware Security Suite. Available at http://www.cloakware.
com

16. Dawson, M.H., Tavares, S.E.: An expanded set of S-Box design
criteria based on information theory and its relation to differential-
like attacks. In: Advances in Cryptology, Eurocrypt ’91, pp. 353–
367 (1991)

17. Filiol, E.: (2004) Strong Cryptography Armoured Computer
Viruses Forbidding Code Analysis : the BRADLEY virus. INRIA
ISSN 0249-6399. In: Proceedings of EICAR 2005 Conference,
StJuliens/Valletta, Malte. Available at http://papers.weburb.org/
frame.php?loc=archive/00000136/

18. Filiol, E.: Techniques virales avancées. Springer, Collection IRIS,
XXI, p. 283, ISBN 978-2-287-33887-8 (2006)

19. Filiol, E.: Metamorphism, formal grammars and undecidable code
mutation. In: International Journal of Computer Science, vol. 2,
Nb. 1, 2007 ISSN 1306–4428 (2007)

20. Gazet, A.: Comparative analysis of various ransomware virii. In:
Proceedings of the 17th EICAR Conference, ESIEA, Laval (2008)

21. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of
white box DES implementations. Cryptology ePrint Archive,
Report 2007/035, 2007. http://eprint.iacr.org/ (2007)

22. Hendessi, F., Gulliver, A., Shafieinejad, A.: A structure for fast
data encryption. J. Contemp. Math. Sci. 2(29–32), 1401–1424
(2007)

23. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving
the security of white-box DES. In: ITCC (1), pp. 679–684 (2005)

24. Michiels, W., Gorissen, P., Preneel, B., Wyseur, B.: Cryptanalysis
of white-box DES implementations with arbitrary external enco-
dings (2007)

25. Preneel, B., Wyseur, B.: Condensed white-box implementations.
In: Proceedings of the 26th Symposium on Information Theory in
the Benelux, pp. 296–301. Brussels, Belgium (2005)

26. Qozah. Polymorphism and grammars, In: 29A E-zine, 4. Available
at http://www.29a.net/ (1999)

27. Riordan, J., Schneier, B.: Environmental Key Generation towards
Clueless Agents. School of Mathematics Counterpane Systems,
University of Minnesota, Minneapolis. Available at http://www.
schneier.com/paper-clueless-agents.pdf

28. Spinellis, D.: Reliable identification of bounded-length viruses is
NP-complete. IEEE Trans. Inf. Theory 49(1), 280–284 (2003)

29. Tavares, S.E., Webster, A.F.: On the design of S-Boxes. In:
Crypto, Lecture Notes in Computer Science, vol. 218, pp. 523–534
(1985)

30. Young, A.L., Yung Cryptovirology: extortion based security
threats and countermeasures. In: Proceedings of IEEE Symposium

123

http://pages.cpsc.ucalgary.ca/~aycock/
http://www.cs.princeton.edu/~mjacob/papers/drm1.pdf
http://www.cs.princeton.edu/~mjacob/papers/drm1.pdf
http://www.math.ias.edu/~boaz/Papers/obfuscate.html
http://www.math.ias.edu/~boaz/Papers/obfuscate.html
http://www.cloakware.com
http://www.cloakware.com
http://papers.weburb.org/frame.php?loc=archive/00000136/
http://papers.weburb.org/frame.php?loc=archive/00000136/
http://eprint.iacr.org/
http://www.29a.net/
http://www.schneier.com/paper-clueless-agents.pdf
http://www.schneier.com/paper-clueless-agents.pdf

334 S. Josse

on Security and Privacy, pp. 129–141. IEEE Computer Society
Press, Oakland (1996)

31. Young, A.L., Yung, M.: Malicious cryptography, exposing cryp-
tovirology. Wiley, New York (2004)

32. Zuo, Z., Zhou, M.: On the time complexity of computer
viruses. IEEE Trans. Inf. Theo. 51(8), 2962–2966 (2003)

33. Zuo, Z., Zhou, M.: Some further theoretical results about computer
viruses. Comp. J. 47(6), 627–633 (2004)

123

	White-box attack context cryptovirology
	Abstract
	1 Introduction
	2 Theoretical background
	2.1 Ideal obfuscator
	2.2 Notes on less restrictive obfuscator models

	3 Use of cryptography by a virus for the purposeof doing extorsion
	3.1 Use of symmetric/asymmetric cryptography
	3.2 Key management by environmental generation
	3.3 Key management and diversification through white box cryptography

	4 Examples of use in a viral context
	4.1 White box integrity checking
	4.2 Logic bomb
	4.3 Polymorphic virus
	4.4 Metamorphic virus
	4.5 Comments

	5 DES and AES white box implementations
	5.1 WB-DES implementation
	5.2 WB-AES implementation

	6 Evaluation
	6.1 Black box security criteria
	6.2 White box diversity and ambiguity criteria
	6.3 Cryptanalysis of two white box implementations
	6.4 Polymorphism

	7 Conclusion
	7.1 Countermeasures and limitations
	7.2 Future works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

